XPS Study of Silica-Supported Copper Catalyst Derived from Binuclear Copper(II) Acetate Monohydrate or Mononuclear Tetraammine Copper(II) Complex

Noriyoshi Kakuta, Akio Kazusaka,* and Koshiro Miyahara Research Institute for Catalysis, Hokkaido University, Sapporo 060 (Received February 28, 1986)

Synopsis. The surface copper(II) species on a CuO/SiO₂ catalyst derived from binuclear copper(II) acetate monohydrate has been studied using XPS in comparison with that from the mononuclear tetraammine copper(II) complex. From the binding energy of Cu 2p_{3/2} peak and the peak ratio of Cu 2p_{3/2} and Si 2p together with the results by EXAFS, it was deduced that the highly dispersed one or two dimensional copper oxide cluster, which is interacted more weakly with SiO2, is developed on the copper(II) acetate monohydrate derived catalyst.

An active site on heterogeneous catalysts has become of interest in the recent year. We have examined to prepare a supported binuclear copper oxide catalyst from typical binuclear copper(II) acetate monohydrate [Cu₂(CH₃COO)₄·2H₂O], and have compared it with a conventional catalyst from a mononuclear tetraammine copper(II) complex.1-6) The recent EXAFS study, however, suggested that the one or two dimensional copper oxide cluster was developed on SiO₂ instead of the binuclear copper oxide. Also, the copper(II) species derived from copper(II) acetate monohydrate has been found to show following properties: 1) It reacts easily with acetic acid to give the binuclear structure of copper(II) ions, which was identified by ESR^{1,2)} or IR,²⁾ 2) it shows a tremendous high catalytic activity for CO oxidation with N2O, CO isotope equilibriation reaction, 1,2) or oxygen isotopeexchange reaction between CO and CO2,5) 3) it is reduced easily to metallic copper with CO under mild conditions. 3,6)

To obtain a further detailed information about it, we have applied a X-ray photoelectron spectroscopy (XPS) technique to above two kinds of silica-supported copper catalyst, finding that the acetate derived catalyst retains a highly dispersed copper oxide cluster.

Experimental

Two kinds of silica-supported copper catalyst were prepared from copper(II) acetate monohydrate (denoted Ac-Cu/SiO₂) and a copper(II) tetraammine complex (denoted Am-Cu/SiO₂), as described in earlier papers. ^{1,2)} Each sample was found to contain copper of 3.7 or 3.4 wt%, respectively. A Vacuum Generators ESCA 3 system was used with Mg Kα radiation (1253.6 eV) for XPS measurements. The samples pressed into disk were pretreated by the way similar to that in the previous paper^{1,2)} with an IR lamp in the preparation chamber of ESCA instrument. CuO was also used for reference measurements. The binding energies (BEs) were referenced to the Si 2p peak at 103.4 eV, or the C 1s peak at 285.0 eV. The binding energies reported here are in accuracy with ±0.2 eV.

Results and Discussion

Figure 1a shows the XPS spectrum in the Cu 2p_{3/2}

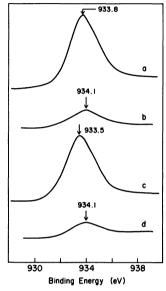


Fig. 1. Cu 2p_{3/2} XPS spectra of calcined Ac-Cu/SiO₂ (a), calcined Am-Cu/SiO₂ (b), reduced Ac-Cu/SiO₂ (c) or reduced Am-Cu/SiO₂ (d). All spectra were measured at room temperature.

region, which was obtained on the Ac-Cu/SiO₂ catalyst activated under vacuum from room temperature to 300°C and calcined with 100 Torr (1Torr=133.322Pa) of oxygen at 300°C; the binding energy of Cu 2p_{3/2} is evaluated at 933.8 eV. The identical value was obtained on the reference sample of CuO. The satelite peak usually observed for typical Cu(II) compounds was unable to detect clearly on this sample. It might be due to the low loading of copper on it. We have used the Ac-Cu/ SiO₂ catalysts containing rather a small amount of copper, because the specific features described previously were found to be lost by increaseing it above ca.7 wt%. An effort to detect the satelite peak due to the Cu(II) species was made at liquid nitrogen temperature, but only the spectrum similar to that of Fig. 1a was observed on it. This result indicates that the Cu(II) species was not reduced during the XPS measurement, as pointed out by Kevan et al.7)

Figure 1b shows the spectrum observed on the Am-Cu/SiO₂ catalyst, which was activated under vacuum at 300°C for 1 h and followed by calcining with 100 Torr of oxygen at 300°C for 1 h. This was also unable to identify the satelite peak in the Cu 2p_{3/2} region. The BE is evaluated at 934.1 eV. This value is higher than that of the Ac-Cu/SiO₂ catalyst or CuO.

In general, it is known that the BEs for metal oxides on supported catalysts tend to be higher than those of metal oxide themselves.^{8,9)} The authors have ascribed it to a coordination effects of supports or

Table 1. Surface Composition of Cu and Si on Ac-Cu/SiO₂ or Am-Cu/SiO₂

Treatment	$Cu(2p_{3/2})/Si(2p)^{a)}$	
	Ac-Cu/SiO ₂	Am-Cu/SiO ₂
Calcined	1.36	0.23
CO reduction	0.95	0.20

a) Estimated uncertainty is within ±5%.

the formation of the new compounds like MAl_2O_4 , $MSiO_3$ etc. (M: metal cations). In this point of view, the copper(II) ions on the Ac-Cu/SiO₂ catalyst interacts more weakly with SiO₂ than those on the Am-Cu/SiO₂ catalyst.

The surface composition of Cu and Si can be evaluated from the peak intensities of their spectra. The ratios of Cu and Si are summarized in Table 1. Although both catalysts contain almost the same amount of copper as described previously, the Ac-Cu/SiO₂ catalyst has ca. 6 times higher concentration of the surface copper species than the Am-Cu/SiO₂ catalyst on their calcined states. These results are in agreement with those by EXAFS study[®]; it was found that one or two dimensional copper oxide cluster was loaded on the Ac-Cu/SiO₂ catalyst, while three dimensional one on the Am-Cu/SiO₂ catalyst.

When the calcined Ac-Cu/SiO₂ catalyst was reduced with 100 Torr of CO at 300°C for 1 h, followed by outgassing it at 300°C for 1 h, the spectrum was changed as shown in Fig.1c, giving the peak at 933.5 eV for Cu 2p_{3/2}. It is somewhat higher than Cu₂O or metallic copper in literature. ¹⁰⁾ The EXAFS study, however, showed that metallic copper was developed on the reduced Ac-Cu/SiO₂ catalyst. ⁶⁾ The BE shift by the CO reduction therefore should be reflected by the presence of metallic copper.

On reducing the calcined Am-Cu/SiO₂ catalyst with 100 Torr of CO at 300°C, a little change was observed in the spectrum (Fig.1d). However, it seems to be broadened, suggesting that a small part of the copper(II) species was reduced by CO at 300°C. The Cu(I) species was detected by EXAFS experiment on it. The surface compositions of Cu and Si on the reduced samples are listed in Table 1.

In conclusion, the Ac-Cu/SiO₂ catalyst retains the highly dispersed low dimensional copper oxide cluster on silica, which is interacted weakly with the silica support. We believe that these features must give several particular catalytic properties different from the Am-Cu/SiO₂ catalyst.

We thank Prof. Nobutsune Takezawa of Hokkaido University for the valuable discussion.

References

- 1) N. Kakuta, A. Kazusaka, and K. Miyahara, Chem. Lett., 1982, 913.
- 2) N. Kakuta, A. Kazusaka, A. Yamazaki, and K. Miyahara, J. Chem. Soc., Faraday Trans. 1, 80, 3245 (1984).
- 3) M. Nomura, A. Kazusaka, N. Kakuta, Y. Ukisu and K. Miyahara, Chem. Phys. Lett., 122, 538 (1985).
- 4) A. Kazusaka, A. Yamazaki, N. Kakuta, J. Chem. Soc., Faraday Trans. 1, 82, 1553 (1986).
- 5) A. Kazusaka, A. Yamazaki, and N. Kakuta, to be published.
- 6) M. Nomura, A. Kazusaka, N. Kakuta, Y. Ukisu, and K. Miyahara, J. Chem. Soc., Faraday Trans. 1, in press.
- 7) S. Contarini and L. Kevan, J. Phys. Chem., **90**, 1630 (1986).
- 8) R. B. Freidman, J. J. Freeman, and F. W. Lytle, J. Catal., 55, 10 (1978).
- 9) R. B. Shalvoy, P. J. Reucroft, and B. H. Davis, *J. Catal.*, **56**, 336 (1979).
- 10) S. Evans, J. Chem. Soc., Faraday Trans. 2, 71, 1044 (1975).